Contractor Coordination Meeting Fuel Cells for Transportation Program, Washington DC, October 30, 2001

Title of Project: Development of High-Performance, Low-Pt Cathodes

Contractor: Superior MicroPowders

3740 Hawkins, NE Albuquerque, NM 87109, USA

www.superiormicropowders.com

Phone: (505) 342-1492; Fax: (505)342-1492

Development of High-Performance, Low-Pt Cathodes

Subcontractors:

Combinatorial Discovery Company Computational Fluid Dynamics RC (CFDRC)

Stack Testing in Kind:
Automotive Fuel Cell Manufacturers

Principal Investigator:

Paolina Atanassova, Ph.D.
Product Development Manger
Fuel Cell Materials

paolina@smp1.com

phone: (505) 342-1492

fax: (505) 342-2168

Development of High-Performance, Low-Pt Cathodes

Project Duration:

Start Date: September 1st, 2001

Duration: 43 months

End Date: March 31st, 2005

Funding:

Total Contract Value: \$3,625,000

Development of High-Performance, Low-Pt Cathodes

• The Problem:

- Large amount of Pt used in electrodes
- High price of Pt and high volatility of the PM
- High fabrication cost of electrode components

The Need:

 High-volume, low-cost production of high-performance reproducible low-Pt electrocatalyst powders

The Solution Platform:

 SMP's revolutionary spray-based process for manufacturing of electrocatalyst powders

The Problem: Market Entry Barrier: Cost to Consumer

The Problem: Market Entry Barrier: Component Costs

SUPERIOR MicroPowders

The Solution Platform: SMP's Spray Based EC Manufacturing

- Simple, robust, reliable process
 - Highly controllable, single step processing
 - Highly reproducible
 - "Green" methodology with minimal waste streams
- Not material specific
 - Inorganics, organics, metals, metal oxides
- Ability to highly engineer critical properties
 - Particle morphologies
 - Particle size distributions
 - Bulk chemistries and structures
 - Surface chemistries and structures
 - Complicated compositions

Hierarchical Structure of SMP Electrocatalyst

Technical Goals and Objectives

- DOE target performance:
 - 1 gPt/kW at 0.8 V pressurized gases
- 0.05 mg Pt/cm² cathode loading
- SMP current performance:

(atm. pressure):

- 0.2 mg Pt/cm² cathode loading
 - 3.3 gPt/kW at 0.8V
 - 1.1 gPt/kW at 0.7 V
 - 0.6 gPt/kW at 0.6 V

Technical Concept

- Effort 1:
 - SMP
 - CC
- Effort 2:
 - SMP/
 - CFDRC
- Short Stack Testing

SUPERIOR MicroPowders

Work Plan Effort 1: Combinatorial Approach

- Combinatorial
 Powder Synthesis
 System (CPSS)
 - Synthesis of Binary
 Alloys and Mixed
 Metal/Metal Oxides
 - Synthesis of Ternary Alloys
- Rapid Catalyst
 Screening for ORR
 Activity

Work Plan Effort 2: Engineered Cathode Structures

- Fuel Cell and Cathode Modeling (CFDRC)
- Engineered Cathode Structures (SMP)
 - Composite particles
 - Novel cathode structures
- Testing in small scale (50 cm²) MEA (SMP)

Project Schedule & Milestones

Performance Targets and Milestones

Success of the Project

- Meet or exceed the DOE Targets for performance at low Pt loading in automotive fuel cell stack test.
- Demonstrate ability to manufacture materials and structures developed in this program at high volume and low cost.

Collaboration/Cooperation

- Collaboration with DOE funded National Lab projects for fundamental studies
- Cooperation with other DOE funded projects:
 - Improved or novel membranes
 - Improved or novel GDL
 - Improved components and FC designs
 - Novel catalyst compositions

